Chain-complete posets and directed sets with applications

نویسنده

  • George Markowsky
چکیده

Let a poset P be called chain-complete when every chain, including the empty chain, has a sup in P. Many authors have investigated properties of posets satisfying some sort of chain-completeness condition (see [,11, [-31, [6], I-71, [17], [,181, ['191, [,211, [,221), and used them in a variety of applications. In this paper we study the notion of chain-completeness and demonstrate its usefulness for various applications. Chain-complete posets behave in many respects like complete lattices; in fact, a chaincomplete lattice is a complete lattice. But in many cases it is the existence of sup's of chains, and not the existence of arbitrary sup's, that is crucial. More generally, let P be called chain s-complete when every chain of cardinality not greater than ~ has a sup. We first show that if a poset P is chain s-complete, then every directed subset of P with cardinality not exceeding ct has a sup in P. This sharpens the known result ([,8], [,181) that in any chain-complete poset, every directed set has a sup. Often a property holds for every directed set i f and only if it holds for every chain. We show that direct (inverse) limits exist in a category if and only if 'chain colimits' ('chain limits') exist. Since every chain has a well-ordered cofinal subset [11, p. 681, one need only work with well-ordered collections of objects in a category to establish or disprove the existence of direct and inverse limits. Similarly, a topological space is compact if and only if every 'chain of points' has a cluster point. A 'chain of points' is a generalization of a sequence. Chain-complete posers, like complete lattices, arise from closure operators in a fairly direct manner. Using closure operators we show how to form the chaincompletion P of any poset P. The chain-completion/~ of a poset P is a chain-complete poset with the property that any chain-continuous map from a poser P into a chain-complete poset Q extends uniquely to a chain-continuous map from the completion/~ into Q, where by a chaincontinuous map we mean one that preserves sup's of chains. If P is already chaincomplete, then/~ is naturally isomorphic to P. This completion is not the MacNeille

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The symmetric monoidal closed category of cpo $M$-sets

In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.

متن کامل

Some Remarks on Pseudotrees

This paper provides new results on pseudotrees. First, it is shown that pseudotrees are precisely those posets for which consistent sets, directed sets, and nonempty chains coincide. Second, we show that chain-complete pseudotrees yield complete meet-semilattices. Third, we prove that pseudotrees are precisely those posets that admit a set representation by sets of appropriate chains. This latt...

متن کامل

Some results on $L$-complete lattices

The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets.First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a spe...

متن کامل

Actions of a separately strict cpo-monoid on pointed directed complete posets

‎ In the present article‎, ‎we study some categorical properties of the category {$bf‎ Cpo_{Sep}$-$S$} of all {separately strict $S$-cpo's}; cpo's equipped with‎ a compatible right action of a separately strict cpo-monoid $S$ which is‎ strict continuous in each component‎. ‎In particular‎, we show that this category is reflective and coreflective in the‎ category of $S$-cpo's‎, ‎find the free a...

متن کامل

Meet-continuity on $L$-directed Complete Posets

In this paper, the definition of meet-continuity on $L$-directedcomplete posets (for short, $L$-dcpos) is introduced. As ageneralization of meet-continuity on crisp dcpos, meet-continuity on$L$-dcpos, based on the generalized Scott topology, ischaracterized. In particular, it is shown that every continuous$L$-dcpo is meet-continuous and $L$-continuous retracts ofmeet-continuous $L$-dcpos are al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006